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Introduction

The surface quasi-geostrophic (SQG) equation assumes the form

∂θ

∂t
+ u · ∇θ + κ(−∆)αθ = 0, (1)

where θ = θ(x, t) is a scalar function of x ∈ R2 (or T2) and t ≥ 0,

and 0 < α ≤ 1 and κ ≥ 0 are parameters. The 2D velocity field u

is determined by θ through a stream function ψ,

u = ∇⊥ψ ≡ (−∂x2 , ∂x1)ψ, (−∆)
1
2ψ = θ. (2)

The fractional Laplacian, (−∆)α, can be defined through the

Fourier transform, ̂(−∆)αf (ξ) = |ξ|2αf̂ (ξ).
Jiahong Wu Generalized surface quasi-geostrophic equations



Introduction
Generalized SQG: inviscid case

Generalized SQG: dissipative case
Generalized SQG with singular velocities

Logarithmically supercritical SQG
Numerical results

Writing Λ for (−∆)
1
2 , then

u = (−∂x2Λ−1θ, ∂x1Λ−1θ) = (−R2θ,R1θ),

where Rj (j = 1, 2) are Riesz transforms.

When κ > 0, (1) is called the dissipative SQG equation. The case

with α = 1
2 arises in geophysical studies of rapidly rotating fluids

(see J. Pedlosky (Springer, 79), Constantin, Majda and Tabak

(Nonlinearity, 94), Majda and Tabak (Physica D, 95) and

Constantin (Springer, 06)).
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When κ = 0, (1) is the inviscid SQG equation. It was derived to

model frontogenesis in meteorology, a formation of sharp fronts

between masses of hot and cold air. It is an important example of

2D active scalars and some of its distinctive features have made it

an important testbed for turbulence theories.
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The global regularity issue: given a sufficiently smooth data

θ(x , 0) = θ0(x),

does the SQG have a global (in time) solution?

What’s the difficulty? Try energy estimates to get global bounds!

It can be shown

‖θ(·, t)‖Lp ≤ ‖θ0‖Lp , 1 ≤ p ≤ ∞

using the pointwise inequality, 0 < α ≤ 2,

2f (−∆)αf (x) ≥ (−∆)αf 2(x) (Cordoba & Cordoba, 2004)

φ′(f ) (−∆)αf (x) ≥ (−∆)αφ(f )(x) for convex φ,
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The issue is the global H1-norm. W = ∇⊥θ satisfies

∂tW + u · ∇W + κ(−∆)αW = W · ∇u

which is in the same form as the 3D vorticity equation.

The SQG resembles, in many aspects, the 3D incompressible

Navier-Stokes and Euler equations.

∇u = P3(ω) for 3D fluid equations

∇u = P2(∇⊥θ) for SQG

where P3 and P2 are singular integral operators.
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The SQG equation has recently attracted enormous attention.

Many important results have been obtained. Here is a partial list

of people: Abidi, Bae, Berselli, Caffarelli, Carrillo, Castro, Chae,

Chamorro, C. Chan, Q. Chen, Z-M. Chen, Chuong, Constantin, A.

Cordoba, D. Cordoba, Dabkowski, J. Deng, B.-Q. Dong, H. Dong,

Dritschel, D. Du, Fefferman, Ferreira, Fontelos, Friedlander,

Gancedo, Hmidi, T. Hou, Iyer, Ju, Keraani, Khouider, Kiselev, Lee,

Lemarie-Rieusset, D. Li, P. Li, R. Li, Majda, Marchand, Mancho
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May, Miao, Miura, Nazarov, Niche, Ohkitani, Pavlovic, Reinaud,

Resnick, Rodrigo, Rusin, Sadek, M. Schonbek, T. Schonbek, Z.

Shi, Silvstre, Stefanov, Tabak, Titi, Vasseur, Vicol, Volberg, H.

Wang, S. Wang, Wu, L. Xue, Yamada, H. Yu, B-Q. Yuan, J. Yuan,

Z. Zhang, Y. Zhou, and others.
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There are two major cases:

κ = 0, the inviscid SQG equation

∂tθ + u · ∇θ = 0, u = (−R2θ,R1θ)

The global regularity problem remains open. This is probably

the simplest active scalar equation for which the global

regularity is unknown. It shares parallel properties with the 3D

Euler equations. For example, W = ∇⊥θ satisfies

∂tW + u · ∇W = W · ∇u.
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Important results have been obtained.

Constantin, Majda and Tabak, 1994 Extensive numerical

computations and geometric regularity criteria

Ohkitani and Yamada, 1997 Numerical computations

D. Cordoba, 1998, Nonexistence of simple hyperbolic blowup

D. Cordoba and C. Fefferman, 2001, 2002 Two level curves can

not touch on a line segment

J. Deng, T. Y. Hou, and X. Yu, 2005
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D. Cordoba, Fontelos, A. Mancho and J. Rodrigo, 2005

B. Khouider and E.S. Titi, 2008 (CPAM, inviscid regularitzation)

D. Chae, 2008

K. Ohkitani and Sakajo, 2010

P. Constantin, M.-C. Lai, R. Sharma, Y.-H. Tseng and J. Wu, 2010

T.Y. Hou and Z. Shi, 2010

D. Chae, P. Constantin and J. Wu, Preprint.
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κ > 0, the dissipative SQG equation

∂tθ + u · ∇θ + κ(−∆)αθ = 0

α = 1
2 appears to be critical. Consider the Fourier transform

d

dt
θ̂(l, t) + κ |l|2α θ̂(l, t) = −

∑
j+k=l

j⊥ · k
|j|

θ̂(j, t)θ̂(k, t).

When α = 1
2 , the nonlinear term is comparable to the dissipative

term.
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The study on the dissipative SQG is divided into three cases:

1) the sub-critical case (α > 1
2 ),

2) the critical case (α = 1
2 ), and

3) the super-critical case (α < 1
2 ).

This problem for the sub-critical case is more or less resolved

(Constantin-Wu, Resnick). Important progress has been made on

the critical and supercritical cases.
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Critical SQG

Theorem. ( Constantin-Córdoba-Wu, Indiana U. Math. J., 2001)

Let α = 1
2 . Assume θ0 ∈ H2 and

‖θ0‖L∞ ≤ Cκ (smallness)

Then there exists a unique global solution θ to the SQG equation

satisfying

‖θ(·, t)‖H2 ≤ ‖θ0‖H2 .
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Small data global existence results have been obtained in various

functional settings, in B2−2α
2,1 by Chae-Lee (Comm. Math. Phys.,

2003), in Cordoba-Cordoba (CMP, 2004), in Br
p,q by J. Wu (2004,

2006), in H2−2α by H. Miura (2006), N. Ju (2006), by

Chen-Miao-Zhang (Comm. Math. Phys., 2007), and by Hmidi and

Keraani (Adv. Math., 2007).
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Progress by Kiselev, Nazarov and Volberg, and by Caffarelli and

Vasseur on the critical case α = 1
2 .

Theorem (Kiselev, Nazarov and Volberg, Invent. Math.

167 (2007), 445-453.)

The critical SQG equation with periodic smooth initial data θ0 has

a unique global smooth solution. Moreover,

‖∇θ‖L∞ ≤ C‖∇θ0‖L∞ exp exp{C‖θ0‖L∞}.

Method of “Modulus of Continuity”:

|θ(x , t)− θ(y , t)| ≤ ω(|x − y |) for all t ≥ 0. Then

‖∇θ(·, t)‖L∞ ≤ ω′(0).
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Theorem (Caffarelli and Vasseur, Ann. of Math. 171 (2010),

1903-1930)

Consider a slightly more general form of the SQG equation

∂θ

∂t
+ u · ∇θ + κ(−∆)αθ = 0, x ∈ Rn, t > 0 (3)

with u satisfying ∇ · u = 0 and each component determined by θ

through a singular integral operator.

Let α = 1
2 . Let θ0 ∈ L2(Rn) and let θ be a Leray-Hopf weak

solution, namely

θ ∈ L∞([0,∞); L2(Rn)) ∩ L2([0,∞); H̊
1
2 (Rn)).
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Then θ is a classical solution for t > 0. In fact, for any t0 > 0

θ ∈ C∞(Rn × [t0,∞)).

The proof is to improve the regularity of θ successively: from L2 to

L∞, from L∞ to Hölder and from Hölder to C1,β.

1) From L2 to L∞. For any t > 0,

sup
x∈Rn
|θ(x, t)| ≤ C

‖u0‖L2

tn/2
, ‖u(·, t)‖BMO ≤ C

‖u0‖L2

tn/2
.

Jiahong Wu Generalized surface quasi-geostrophic equations



Introduction
Generalized SQG: inviscid case

Generalized SQG: dissipative case
Generalized SQG with singular velocities

Logarithmically supercritical SQG
Numerical results

2) From L∞ to Cδ for some δ > 0. De Giorgi iteration.

3) From Cδ to C1,β (classical solution). They write the critical QG

equation as

θ(x, t) = P(·, t) ∗ θ0 − g(x, t)

g(x, t) =

∫ t

0

∫
P(x− y, t− τ)∇ · (uθ)(y, τ) dydτ.

where

P(x, t) = Cn
t

(|x|2 + t2)
n+1

2

.

They first show

g(x̃ + he)− g(x̃) = O(h2δ), x̃ ≡ (x, t)

and then iterate. Jiahong Wu Generalized surface quasi-geostrophic equations
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Two new proofs by Kiselev and Nazarov and by Constantin and

Vicol.

Theorem (Kiselev and Nazarov, Zap. Nauchn. Sem. S.-Peterburg.
Otdel. Mat. Inst. Steklov. (POMI) 370 (2009))

Assume (θ, u) ∈ C∞(Td × [0,T ]) satisfies the critical SQG
equation. Assume that ‖u‖BMO ≤ B uniformly for t ∈ [0,T ].
Then, there is β = β(B, d) such that

‖θ(·, t)‖Cβ ≤ C (θ0,B) for any t ∈ [0,T ].

A consequence is the global regularity of the critical SQG.
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The idea is to characterize the Hölder space Cβ as the dual of a

local Hardy space. The key part is to show the transfer of

evolution on the test function.
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Theorem (Constantin and Vicol, arXiv: 1110.0179v1, 2 Oct 2011)

(Pointwise nonlinear lower bound) For any f ∈ S, α ∈ (0, 2)

∇f · Λα∇f ≥ 1

2
Λα|∇f |2 +

|∇f |2+α

c‖f ‖αL∞
.

One consequence is the global regularity of the critical SQG with

any data in Schwartz class. They define the so-called “Only Small

Shocks” (denoted OSSδ) meaning

sup
|x−y |<L

|θ(x , t)− θ(y , t)| ≤ δ.

They show that (1) θ0 ∈ OSSδ implies θ ∈ OSS8δ; and (2) θ ∈

OSSδ implies regularity.
Jiahong Wu Generalized surface quasi-geostrophic equations



Introduction
Generalized SQG: inviscid case

Generalized SQG: dissipative case
Generalized SQG with singular velocities

Logarithmically supercritical SQG
Numerical results

Supercritical SQG: α < 1
2

There are many papers devoted to the supercritical case.

We summarize the major results in two recent papers

• Constantin and Wu, Regularity of Hölder continuous solutions

of the supercritical quasi-geostrophic equation, Ann. Inst. H.

Poincare Anal. Non Lin. 25(2008), 1103-1110.

• Constantin and Wu, Hölder continuity of solutions of

supercritical hydrodynamic transport equation, Ann. Inst. H.

Poincare Anal. Non Lin. 26(2009), 159-180.
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Theorem Let θ0 ∈ L2(Rn) and θ be a Leray-Hopf weak solution of

(3) with α < 1
2 . Then, for any t > 0,

sup
Rn
|θ(x, t)| ≤ C

‖θ0‖L2

t
n

4α

, ‖u(·, t)‖BMO(Rn) ≤ C
‖θ0‖L2

t
n

4α

.
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Theorem Let 0 < α < 1
2 . Let θ be a Leray-Hopf weak solution.

Assume, for t0 > 0,

θ ∈ L∞(Rn × [t0,∞))

and

u ∈ L∞([t0,∞); C1−2α(Rn)).

Then, for some δ > 0,

θ ∈ Cδ(Rn × [t0,∞)).

Open problem: Can the condition on u be removed?
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Diego Chamorro attempted to remove the assumption

u ∈ C1−2α

but failed

arXiv: 1007.3919v1 [math.AP] 22 Jul 2010

arXiv: 1007.3919v1 [math.AP] 22 Oct 2010

arXiv: 1007.3919v4 [math.AP] 12 Apr 2011
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Theorem Let 0 < α < 1
2 . Let θ be a Leray-Hopf weak solution. Let

δ > 1− 2α and let 0 < t0 < t <∞. If

θ ∈ L∞([t0, t]; Cδ(R2)),

then

θ ∈ C∞((t0, t]× R2).

Remark. This theorem also applies to the critical case.

Remark. Dong and Pavlovic (2010) generalized this result by

replacing the Holder norm by more general Besov norms.
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Remark. A weak solution at the regularity level Cδ with

δ > 1− 2α or higher can not develop finite-time singularity.

Remark. Whether δ > 1− 2α can be removed remains open.
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Eventual regularity for α < 1
2

L. Silvestre (2010) showed that a weak solution is eventually

smooth if α is sufficiently close to 1
2 .

M. Dabkowski, arXiv: 1007.2970v1 [math.AP] 18 Jul 2010

For any 0 < α < 1
2 , there is T = T (α, ‖θ0‖L∞) such that if the

solution is smooth on [0,T ], then it is smooth for any t > 0.

A. Kiselev, arXiv: 1009.0542v1 [math.AP] 2 Sep 2010

Generalized modulus of continuity

C. Miao & L. Xue: arXiv:1011.6214 [math.AP] 29 Nov 2010
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Generalized SQG: inviscid case

Consider the the generalized SQG equation
∂tθ + u · ∇θ = 0, x ∈ R2, t > 0,

u = ∇⊥ψ ≡ (−∂x2ψ, ∂x1ψ), −Λ2ψ = P(Λ) θ,
(4)

where θ = θ(x , t) is a scalar function of x ∈ R2 and t ≥ 0, u

denotes the velocity field, ψ the stream function, and

Λ = (−∆)
1
2 , P̂(Λ)θ(ξ) = P(|ξ|)θ̂(ξ).
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Special examples of (4) are

When P(Λ) = I , (4) becomes

the 2D Euler vorticity equation{
∂tω + u · ∇ω = 0,
u = ∇⊥ψ, ∆ψ = ω.

(5)

When P(Λ) = Λ, (4) becomes

the inviscid SQG equation{
∂tθ + u · ∇θ = 0,
u = ∇⊥ψ, −Λψ = θ.

(6)

The SQG is sometimes written as u = (−R2θ,R1θ).
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When P(Λ) = Λβ, (4) becomes

the generalized SQG equation{
∂tθ + u · ∇θ = 0,
u = ∇⊥ψ, ∆ψ = Λβ θ,

(7)

When P(Λ) = (log(1 + log(1−∆)))γ , (4) becomes

the Log-log Euler equation{
∂tθ + u · ∇θ = 0,
u = ∇⊥ψ, ∆ψ = (log(1 + log(1−∆)))γ θ.

(8)
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Motivation The equations with P(Λ) = Λβ bridges the 2D Euler

and the inviscid SQG. The 2D Euler has global regularity while the

global regularity of the SQG appears to be extremely hard. Are

there any equations in between have global regularity?

Numerical computations on two patches appear to indicate

finite-time singularity. See D. Córdoba, M. Fontelos, A. Mancho

and J. Rodrigo, Evidence of singularities for a family of contour

dynamics equations, Proc. Natl. Acad. Sci. USA 102 (2005),

5949–5952.
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In a recent paper

D. Chae, P. Constantin and J. Wu, Inviscid models generalizing the

2D Euler and the surface quasi-geostrophic equations, Archive for

Rational Mechanics and Analysis 202 (2011), 35-62.

we obtained the global regularity of an equation with velocity more

singular than the 2D Euler velocity
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Global regularity for the Loglog-Euler equation

Let P(Λ) = (log(1 + log(1−∆)))γ


∂tθ + u · ∇θ = 0,
u = ∇⊥ψ, ∆ψ = (log(1 + log(1−∆)))γ θ,
θ(x , 0) = θ0(x).

(9)

which we call the Loglog-Euler equation. If we think of

(log(1 + log(1−∆)))γ θ as vorticity ω, we have unbounded

vorticity which does not belong to the Yudovich class.
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Theorem (Chae, Constantin and Wu: Archive for Rational
Mechanics and Analysis, 2011)

Consider the initial-value problem (9) with γ and θ0 satisfying

0 ≤ γ ≤ 1, θ0 ∈ L1(R2) ∩ L∞(R2) ∩ Bs
q,∞(R2) (10)

where 2 < q ≤ ∞ and s > 1. Then the initial-value problem (9)
has a unique global solution θ satisfying,

θ ∈ L∞([0,∞); Bs
q,∞(R2)), ∇u ∈ L∞([0,∞); Bs1

q,∞(R2)),

where s1 < s.
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Definition (Besov spaces)

For s ∈ R and 1 ≤ p, q ≤ ∞, the inhomogeneous Besov space Bs
p,q

is defined by

Bs
p,q =

{
f ∈ S ′ : ‖f ‖Bs

p,q
<∞

}
,

where

‖f ||Bs
p,q
≡


( ∞∑

j=−1

(
2js ‖∆j f ‖Lp

)q)1/q
, if q <∞,

sup
−1≤j<∞

2js ‖∆j f ‖Lp , if q =∞.
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Remark

Because of the embedding relations

W r
q ↪→ B r

q,∞ ↪→ B r1
q,min{2,q} ↪→W r1

q , r > r1,

we can conclude that any initial data in W r
q with 2 < q ≤ ∞ and

r > 1 would yield a global solution in W r1
q for any r1 < r .
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To prove this theorem, we developed tools to handle operators

P(Λ) whose symbol P(|ξ|) satisfying the following conditions

Assumption

The symbol P = P(|ξ|) assumes the following properties:

1 P is continuous on Rd and P ∈ C∞(Rd \ {0});

2 P is radially symmetric;

3 P = P(|ξ|) is nondecreasing in |ξ|;
4 There exists two constants C and C0 such that

sup
2−1≤|η|≤2

∣∣(I −∆η)n P(2j |η|)
∣∣ ≤ C P(C0 2j)

for any integer j and n = 1, 2, · · · , 1 +
[

d
2

]
.

Jiahong Wu Generalized surface quasi-geostrophic equations



Introduction
Generalized SQG: inviscid case

Generalized SQG: dissipative case
Generalized SQG with singular velocities

Logarithmically supercritical SQG
Numerical results

(4) in Assumption is a very natural condition on symbols of Fourier

multiplier operators in order for the operator to be bounded from

Lp to Lp (1 < p <∞) as in the Mihlin-Hörmander Multiplier

Theorem. Some special examples of P are

P(ξ) = |ξ|β with β ≥ 0,

P(ξ) =
(
log(1 + |ξ|2)

)γ
with γ ≥ 0,

P(ξ) =
(
log(1 + log(1 + |ξ|2))

)γ
with γ ≥ 0,

P(ξ) = (log(1 + |ξ|2))γ |ξ|β with γ ≥ 0 and β ≥ 0.
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The first ingredient is the control for ‖∇u‖L∞ .

Theorem

Let u : Rd → Rd be a vector field. Assume that u is related to a
scalar θ by

(∇u)jk = RlRm P(Λ) θ,

where 1 ≤ j , k , l ,m ≤ d, (∇u)jk denotes the (j , k)-th entry of ∇u
Rl denotes the Riesz transform, and P obeys Assumption. Then,
for any integers j ≥ 0 and N ≥ 0,

‖SN∇u‖Lp ≤ Cp,d P(2N) ‖SNθ‖Lp , 1 < p <∞, (11)

‖∆j∇u‖Lq ≤ Cd P(2j) ‖∆jθ‖Lq , 1 ≤ q ≤ ∞, (12)

‖SN∇u‖L∞ ≤ Cd ‖θ‖L1∩L∞ + Cd N P(2N) ‖SN+1θ‖L∞ , (13)

where Cp,d is a constant depending on p and d only and Cd ’s
depend on d only.
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Another ingredient is the interpolation inequality.

Proposition

Let u : Rd → Rd be a vector field. Assume

(∇u)jk = RlRm (log(I + log(I −∆)))γ θ (14)

Then, for any 1 ≤ q ≤ ∞ and s > d/q,

‖∇u‖L∞ ≤ ‖θ‖L1∩L∞ + C ‖θ‖L∞ log(1 + ‖θ‖Bs
q,∞)

×
(

log
(

1 + log(1 + ‖θ‖Bs
q,∞)

))γ
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Global regularity for the Log-Euler is open

It is currently unknown if solutions of the Log-Euler equation
∂tθ + u · ∇θ = 0,
u = ∇⊥ψ, ∆ψ = (log(1−∆))γ θ,
θ(x , 0) = θ0(x).

(15)

are global in time.
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P(Λ) = Λβ

Consider the active scalar equation{
∂tθ + u · ∇θ = 0,

u = ∇⊥ψ, ∆ψ = Λβ θ, Λ = (−∆)1/2, β ≥ 0.
(16)

When β = 0, this is the 2D Euler vorticity.

When β > 0, the global regularity issue is open.

We have the following regularity criterion.
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As β increases, u becomes more singular and the global regularity

problem becomes more difficult.

‖∇u‖L∞ = ‖∇∇⊥∆−1Λβθ‖L∞

= ‖RjRkΛβθ‖L∞ ≈ ‖Λβθ‖L∞ log(1 + ‖θ‖H3(orCσ))

β = 1 corresponds to the SQG equation. When β < 1, the velocity

is more regular. When β > 1, the velocity is more singular than the

SQG velocity.
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Theorem (Chae, Constantin and Wu: ARMA, 2011)

Consider (33) with 0 ≤ β ≤ 1. Let θ be a solution of (33)
corresponding to the data θ0 ∈ Cσ(R2) ∩ Lq(R2) with σ > 1 and
q > 1. Let T > 0. If θ satisfies∫ T

0
‖θ(·, t)‖Cβ(R2) dt <∞,

then θ remains in Cσ(R2) ∩ Lq(R2) on the time interval [0,T ].

In order to obtain global regularity, the standard idea is to bound

‖∇u‖L∞ = ‖∇∇⊥∆−1Λβθ‖L∞

= ‖RjRkΛβθ‖L∞ ≈ ‖Λβθ‖L∞ log(1 + ‖θ‖H3(orCσ))
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The proof of this result involves two ingredients. The first one

bounds the L∞-norm of S in terms of the logarithm of the

Hölder-norm of θ.

Proposition

Let 0 ≤ β ≤ 1. Assume that u and θ are related by

u = −∇⊥Λ−2+βθ (17)

If θ ∈ Cσ(R2) ∩ Lq(R2) with σ > β and q > 1,

‖S‖L∞ ≤ C1‖θ‖Cβ ln(1 + ‖θ‖Cσ) + C2‖θ‖Lq , (18)

where C1 and C2 are constants depending on β, σ and q only.

Jiahong Wu Generalized surface quasi-geostrophic equations



Introduction
Generalized SQG: inviscid case

Generalized SQG: dissipative case
Generalized SQG with singular velocities

Logarithmically supercritical SQG
Numerical results

Proposition

Let u be a velocity field and let S = 1
2(∇u + (∇u)T ) Let A be the

back-to-labels map. Then,

‖∇xA(·, t)‖L∞ ≤ exp

(∫ t

0
‖S(·, τ)‖L∞ dτ

)
.

Proof of Theorem: For any σ ≤ 1,

‖θ(·, t)‖Cσ = sup
x 6=y

|θ(x , t)− θ(y , t)|
|x − y |σ

≤ ‖θ0‖Cσ ‖∇xA(·, t)‖σL∞ .

ln(1+‖θ(·, t)‖Cσ) ≤ C ln(1+‖θ0‖Cσ+‖θ0‖Lq ) exp

(
C

∫ t

0
‖θ(·, τ)‖Cβ dτ

)
.

Jiahong Wu Generalized surface quasi-geostrophic equations



Introduction
Generalized SQG: inviscid case

Generalized SQG: dissipative case
Generalized SQG with singular velocities

Logarithmically supercritical SQG
Numerical results

Generalized SQG: dissipative case

Consider the generalized dissipative SQG equation{
∂tθ + u · ∇θ + κ(−∆)αθ = 0,
u = ∇⊥ψ, Λ2ψ = P(Λ) θ.

(19)

where κ > 0, α > 0 and P satisfies the Assumption.
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Special examples of (19) are

When P(Λ) = I , (19) becomes

the 2D Navier-Stokes vorticity equation{
∂tω + u · ∇ω + κ(−∆)αω = 0,
u = ∇⊥ψ, ∆ψ = ω.

(20)

When P(Λ) = Λ, (19) becomes

the dissipative SQG equation{
∂tθ + u · ∇θ + κ(−∆)αθ = 0,
u = ∇⊥ψ, −Λψ = θ.

(21)

The SQG is sometimes written as u = (−R2θ,R1θ).
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When P(Λ) = (log(1−∆))γ , (19) becomes

the Log-Navier-Stokes equation{
∂tθ + u · ∇θ + κ(−∆)αθ = 0,
u = ∇⊥ψ, ∆ψ = (log(1−∆))γ θ.

(22)

When P(Λ) = Λβ, (19) becomes

the generalized dissipative SQG equation{
∂tθ + u · ∇θ + κ(−∆)αθ = 0,
u = ∇⊥ψ, ∆ψ = Λβ θ,

(23)

which was previously studied by Constantin, Iyer and Wu in

2008.
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Constantin, Iyer and Wu, Indiana U. Math. J., 2008

P(Λ) = Λ−(1−2α) or Λ1−2αu = ∇⊥∇−1θ.

Kiselev, Adv. Math, 2011

Nonlocal maximum principles for active scalars

Chae, Constantin and Wu, Arch. Ration. Mech. Anal., 2011

Chae, Constantin and Wu, arXiv:1011.0171v1 [math.AP] 31 Oct

2010

Miao and Xue, arXiv:1011.6214 [math.AP] 29 Nov 2010
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Chae, Constantin, Cordoba, Gancedo and Wu, arXiv:1101.3537v1

[math.AP] 18 Jan 2011

Dabkowski, Kiselev and Vicol, arXiv:1106.2137 [math.AP] 10 Jun

2011 slightly supercritical surface quasi-geostrophic equation

The magneto-geostrophic equation

Friedlander and Vicol, Ann. Inst. H. Poincar Anal. Non Linaire,

2011

Friedlander and Vicol, arXiv:1105.1403 [math.AP] 13 May 2011

Friedlander, Rusin and Vicol, arXiv:1110.1129 [math.AP] 6 Oct

2011
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The results presented below are from the joint work

D. Chae, P. Constantin and J. Wu, Dissipative models generalizing

the 2D Navier-Stokes and the SQG equations, arXiv:1011.0171v1

[math.AP] 31 Oct 2010
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Definition (Extended Besov spaces)

Let s ∈ R and 1 ≤ q, r ≤ ∞. Let {Aj}j≥−1 with Aj ≥ 0 be a

nondecreasing sequence. Let f ∈ S ′. We say f ∈ Bs,A
q,r if f satisfies

‖f ‖
Bs,A

q,r
≡
∥∥∥2s Aj ‖∆j f ‖Lq

∥∥∥
l r
<∞.

When Aj = j + 1, Bs,A
q,r becomes the Besov space Bs

q,r . When

Aj

j + 1
→ 0, j →∞

Bs,A
q,r is called a sub-Besov space. When the limit tends to ∞, Bs,A

q,r

is called a super-Besov space.
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Global regularity for general P(Λ)

Theorem (Chae, Constantin and Wu: arXiv:1011.0171v1)

Consider the dissipative active scalar equation (19) with κ > 0,
α > 0 and P(ξ) satisfying Condition 2.4. Let s > 1, 2 ≤ q ≤ ∞
and A = {Aj}j≥−1 be a nondecreasing sequence with Aj ≥ 0. Let

θ0 ∈ L1(Rd) ∩ L∞(Rd) ∩ Bs,A
q,∞(Rd). Assume either the velocity u

is divergence-free or the solution θ is bounded in L1(Rd) ∩ L∞(Rd)
for all time. If, there exists a constant C such that for all j ≥ −1,

∑
k≥j−1,k≥−1

2sAj−2 P(2k+1)

2sAk P(2j+1)
< C (24)

and
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Theorem

κ−1 2s(Aj−Aj−2) (j + 2)P(2j+2) 2−2αj → 0 as j →∞, (25)

then (19) has a unique global solution θ satisfying, for any T > 0

θ ∈ L∞
(

[0,T ]; Bs,A
q,∞(Rd)

)
.
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Global regularity for (log(I −∆))γ

One special consequence is when P(Λ) = (log(I −∆))γ . Consider{
∂tθ + u · ∇θ + κ(−∆)αθ = 0,
u = ∇⊥ψ, ∆ψ = (log(I −∆))γ θ.

with κ > 0, α > 0 and γ ≥ 0. In this case

P(|ξ|) =
(
log(I + |ξ|2)

)γ
, γ ≥ 0 and Aj = (j+1)b for some b ≤ 1,

(26)

(24) is trivially satisfied and the condition in (25) reduces to

2s((j+1)b−jb) (j + 2)1+γ2−2αj → 0 as j →∞, (27)

which is obviously satisfied for any α > 0.
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Theorem

Consider the dissipative Log-Euler equation{
∂tθ + u · ∇θ + κ(−∆)αθ = 0,
u = ∇⊥ψ, ∆ψ = (log(1−∆))γ θ

(28)

with κ > 0, α > 0 and γ ≥ 0. Assume that θ0 satisfies

θ0 ∈ Y ≡ L1(R2) ∩ L∞(R2) ∩ Bs,A
q,∞(R2)

with s > 1, 2 ≤ q ≤ ∞ and A given in (26). Then (28) has a
unique global solution θ satisfying

θ ∈ L∞ ([0,∞); Y ) .
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Theorem

Consider the active scalar equation{
∂tθ + u · ∇θ + κ(−∆)αθ = 0,
u = ∇⊥ψ, ∆ψ = Λβ (log(1−∆))γ θ

(29)

with κ > 0, α > 0, 0 ≤ β < 2α ≤ 1 and γ ≥ 0. Assume the initial
data θ0 ∈ Y ≡ L1(R2) ∩ L∞(R2) ∩ Bs,A

q,∞(R2) with s > 1,
2 ≤ q ≤ ∞ and Aj = j + 1. Then (29) has a unique global
solution θ satisfying

θ ∈ L∞ ([0,∞); Y ) .
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In conclusion, we developed a global regularity theory for the

generalized SQG equations with very general Fourier multiplier

operators. The extended Besov spaces proposed here include a

range of spaces such as Sobolev spaces and Schwarz class.

In addition, the results presented here indicate that κ(−∆)α for

any α > 0 does have a regularization effect.
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Generalized SQG with singular velocities

We now turn to generalized SQG with singular velocities. These

results are from a joint work

D. Chae, P. Constantin, D. Córdoba, F.Gancedo and J. Wu,

Generalized surface quasi-geostrophic equations with singular

velocities, arXiv:1101.3537v1 [math.AP] 18 Jan 2011.

Jiahong Wu Generalized surface quasi-geostrophic equations



Introduction
Generalized SQG: inviscid case

Generalized SQG: dissipative case
Generalized SQG with singular velocities

Logarithmically supercritical SQG
Numerical results

Consider two models. The first one is given by

∂tθ + u · ∇θ = 0,

u = ∇⊥ψ, ∆ψ = Λβθ,
(30)

where β is a real parameter satisfying 1 < β ≤ 2.

β = 1 corresponds to the SQG equation. When β > 1, u is more

singular than the SQG equation since

u = ∇⊥∆−1Λβθ = R⊥Λβ−1θ

demands more regularity in θ.
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When β = 2,

ψ = −θ, u = −∇⊥θ, u · ∇θ ≡ 0

and the equation is reduced to ∂tθ = 0, which has global solution.

Since the velocity in the case 1 < β < 2 is more singular than the

SQG, the issue is whether or not one can establish the local

existence and uniqueness.
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What is the difficulty? Let σ be a multi-index with |σ| ≤ m.

d

dt
‖Dσθ‖2L2 = −

∫
Dσ(u · ∇θ) Dσθ dx

The most singular part in the nonlinear term is∫
Dσu · ∇θDσθ dx

where u = Λβ−1R⊥θ with β > 1. The idea is to rewrite the

integral in terms of commutator. Realizing that for any

skew-adjoint operator A, we have∫
A(f ) fg dx = −

∫
fA(fg) dx = −1

2

∫
f [A, g ]f dx

Jiahong Wu Generalized surface quasi-geostrophic equations



Introduction
Generalized SQG: inviscid case

Generalized SQG: dissipative case
Generalized SQG with singular velocities

Logarithmically supercritical SQG
Numerical results

∫
Dσu · ∇θDσθ dx = −1

2

∫
Dσθ [Λβ−1R⊥,∇θ]Dσθ dx

Notice that R⊥ = Λ−1∇⊥. We need a commutator estimate.

Proposition

For any s ∈ R,

‖[Λs∂x , g ]f ‖L2 ≤ Cε(‖Λs f ‖L2‖g‖H2+ε + ‖f ‖L2‖g‖H2+s+ε).

Applying this proposition with s = β − 2, we get∣∣∣∣∫ Dσu · ∇θDσθ dx

∣∣∣∣ ≤ C‖Dσθ‖2L2‖∇θ‖Hβ+ε .
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Theorem (Local smooth solution)

Consider (30) with 1 < β ≤ 2. Assume that θ0 ∈ Hm(R2) with
m ≥ 4. Then (30) has a unique local (in time) solution
θ ∈ C ([0,T ]; Hm(R2)) for some T = T (‖θ0‖Hm) > 0
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Theorem

Assume that θ0 ∈ L2(T2) has mean zero, namely∫
T2

θ0(x) dx = 0.

Then (30) has a global Leray-Hopf weak solution.

For 1 < β < 2, the velocity is more singular and we need to write

the nonlinear term as a commutator in terms of the stream

function ψ.
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The second equation is given by

∂tθ + u · ∇θ + κ(−∆)αθ = 0,

u = ∇⊥ψ, ∆ψ = (log(I −∆))µΛβθ,
(31)

where κ > 0, α > 0 and µ > 0 are real parameters.
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When β = 2 and µ = 0, then u = ∇⊥θ and u · ∇θ = 0. It

becomes a linear equation and has global solution.

When β = 2 and µ > 0, the velocity field u = ∇⊥(log(I −∆))µθ is

logarithmically beyond the trivial case. Do we have a global

solution? Do we even have a local solution?

K. Ohkitani was the first one who proposed this problem.
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Theorem

Consider the active scalar equation (31) with κ > 0, α > 0 and
µ > 0. Assume the initial data θ0 ∈ H4(R2). Then there exists
T > 0 such that (31) has a unique solution θ ∈ C ([0,T ]; H4(R2)).

Again we need to deal with the nonlinear term∫
Dσu · ∇θDσθ dx

with u = (log(I −∆))µ∇⊥θ (one derivative higher plus logarithm)
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A commutator estimate involving the logarithm of Laplace.

Proposition

Let µ ≥ 0. Let ∂x denote a partial derivative, either ∂x1 or ∂x2 .
Then, for any δ > 0 and ε > 0,

‖ [(ln(I −∆))µ∂x , g ] f ‖L2 ≤ Cµ,ε,δ

(
1 +

(
ln

(
1 +
‖f ‖Ḣδ
‖f ‖L2

))µ)
‖f ‖L2 ‖g‖H2+3ε ,

where Cµ,ε,δ is a constant depending on µ, ε and δ only, Ḣδ

denotes the standard homogeneous Sobolev space and the brackets
denote the commutator.
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In addition, we also obtained local well-posedness of the contour

dynamics under the first model. This result extends a previous

work of F. Gancedo to 1 < β ≤ 2.

F. Gancedo, Existence for the a-patch model and the QG sharp

front in Sobolev spaces, Adv. Math. 217 (2008), 2569-2598.
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Logarithmically supercritical SQG

Work in progress

∂tθ + u · ∇θ + κ
Λ2α

log2β(1 + Λ)
θ = 0,

u = ∇⊥ψ, −Λψ = θ.

(32)

Theorem

Let κ > 0, α > 0 and β ≥ 0. Let θ0 ∈ L2 and let θ be a
corresponding Leray-Hopf weak solution. Then, for any t > 0,

‖θ(·, t)‖L∞ ≤ C
‖θ0‖L2

t
1

2α1

where 0 < α1 < α and C is a constant depending on α1 and β.
only. Jiahong Wu Generalized surface quasi-geostrophic equations
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Theorem

Let θ0 ∈ L2(R2) and let θ be a corresponding Leray-Hopf weak
solution. Let 0 < t1 < t2 <∞. If θ ∈ L∞([t1, t2]; C δ) with
δ > 1− 2α, then

θ ∈ C∞((t1, t2]× R2).

We are also trying the method “Modulus of Continuity”.
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Numerical results

Following the pioneering work of Constantin, Majda and Tabak and

also the work of Ohkitani and Yamada, we have done extensive

numerical computations on the SQG and related equations.

How does β affect the regularity of the solutions to
∂tθ + u · ∇θ = 0,

u = ∇⊥ψ, ∆ψ = Λβ θ, Λ = (−∆)1/2, β ≥ 0,
θ(x , 0) = sin x1 sin x2 + cos x2, x ∈ [0, 2π]× [0, 2π]

(33)
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Some of the plots are from the paper

Peter Constantin, Ming-Chih Lai, Ramjee Sharma, Yu-Hou Tseng

and Jiahong Wu, New numerical results for the surface

quasi-geostrophic equation, Journal of Scientific Computing,

accepted for publication.

We thank T. Hou and K. Ohkitani for technical help.
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Parallel computing on total 128 machines with each being an

Intel Pentium Xeon EM64T quad Core E5405 @ 2.0 GHz

processors in Supercomputing Center at University of

Oklahoma.

Different uniform mesh sizes: 256× 256, 512× 512 ,

1024× 1024, 2048× 2048, and 4096× 4096.

Parallel Fourier transforms were calculated by using mpi fftw

(Fast Fourier Transform in the West) routines.

The time integration was carried out by the fourth-order

Runge-Kutta method. The time step ∆t = ∆x/10.
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β = 1 or the inviscid SQG equation

θt + u · ∇θ = 0, κ > 0,

u = (−∂x2Λ−1θ, ∂x1Λ−1θ) = (−R2θ,R1θ)

θ(x , 0) = sin x1 sin x2 + cos x2, x ∈ [0, 2π]× [0, 2π]

The L2-norm and helicity were monitored.
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Figure: Contours of θ from t=0 to t=16
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Figure: Contours of θ, t = 16, N = 4096, first quarter
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Figure: Contours of θ, t = 16, N = 4096, second quarter
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Figure: Contours of θ, t = 16, N = 4096, third quarter
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Figure: Contours of θ, t = 16, N = 4096, fourth quarter
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β = 0 or the 2D Euler vorticity equation

∂tω + u · ∇ω = 0,

u = (−∂x2Λ−2θ, ∂x1Λ−2θ),

ω(x , 0) = sin x1 sin x2 + cos x2.
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Figure: Contour of ω at t = 1
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Figure: Contour of ω at t = 2
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Figure: Contour of ω at t = 3
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Figure: Contour of ω at t = 4
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Figure: Contour of ω at t = 5
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Figure: Contour of ω at t = 6
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Figure: Contour of ω at t = 7
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Figure: Contour of ω at t = 8

Jiahong Wu Generalized surface quasi-geostrophic equations



Introduction
Generalized SQG: inviscid case

Generalized SQG: dissipative case
Generalized SQG with singular velocities

Logarithmically supercritical SQG
Numerical results

Figure: Contour of ω at t = 9
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Figure: Contour of ω at t = 10
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A side-by-side comparison between the SQG and the 2D Euler
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Figure: Left: contour of θ at t = 8; Right: contours of ω at t = 8
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Figure: Left: contour of θ at t = 10; Right: contours of ω at t = 10
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Figure: Left: contour of θ at t = 10; Right: contours of ω at t = 8
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Figure: Comparison of contours for various β at t = 16
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Figure: Comparison of contours for various β at t = 20
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In conclusion, we have covered the following topics

A summary of results for the critical and supercritical SQG

Recent work for the generalized inviscid SQG

Recent work for the generalized dissipative SQG

Generalized SQG with singular velocities

Logarithmically supercritical SQG equation

Numerical results
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Some Proofs

The rest of slides detail the proofs of the major theorems. They

are divided into three subsections: bounds for ∇u, proofs for the

theorem in the inviscid case and proofs for the theorem in the

viscous case.
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Bounds for ∇u

First we need to control ‖∇u‖L∞ .

Theorem

Let u : Rd → Rd be a vector field. Assume that u is related to a
scalar θ by

(∇u)jk = RlRm P(Λ) θ,

where 1 ≤ j , k , l ,m ≤ d, (∇u)jk denotes the (j , k)-th entry of ∇u
Rl denotes the Riesz transform, and P obeys Assumption. Then,
for any integers j ≥ 0 and N ≥ 0,

‖SN∇u‖Lp ≤ Cp,d P(2N) ‖SNθ‖Lp , 1 < p <∞, (34)

‖∆j∇u‖Lq ≤ Cd P(2j) ‖∆jθ‖Lq , 1 ≤ q ≤ ∞, (35)

‖SN∇u‖L∞ ≤ Cd ‖θ‖L1∩L∞ + Cd N P(2N) ‖SN+1θ‖L∞ , (36)

where Cp,d is a constant depending on p and d only and Cds’
depend on d only.
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We make use of Mihlin and Hörmander Multiplier Theorem (see

[Stein, p.96]) to prove (34).

Theorem

Suppose that Q(ξ) is of class C k in the complement of the origin
of Rd , where k > d

2 is an integer. Assume also that

|DαQ(ξ)| ≤ B |ξ|−|α|, whenever |α| ≤ k . (37)

Then Q ∈Mq, 1 < q <∞. That is, ‖TQ f ‖Lq ≤ Cq ‖f ‖Lq , where
TQ is defined by

T̂Q f (ξ) = Q(ξ) f̂ (ξ).

Write ̂(SN∇u)jk(ξ) = Q(ξ) P(C02N) ŜNθ(ξ) and verify that Q

satifies the condition of this theorem.
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The Proof of (35):

(∆N∇u)jk = RlRm P(Λ)∆Nθ

and

̂(∆N∇u)jk(ξ) = −ξl ξm
|ξ|2

P(|ξ|) ∆̂Nθ(ξ).

Then

̂(∆N∇u)jk(ξ) = −ξl ξm
|ξ|2

P(|ξ|) φ̃N(ξ) ∆̂Nθ(ξ)

or

(∆N∇u)jk = g ∗∆Nθ,

The rest is to verify that g ∈ L1.
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Proof for the inviscid case

We recall the theorem here

Theorem

Consider the initial-value problem (15) with γ and θ0 satisfying

0 ≤ γ ≤ 1, θ0 ∈ L1(R2) ∩ L∞(R2) ∩ Bs
q,∞(R2)

where 2 < q ≤ ∞ and s > 1. Then the initial-value problem (15)
has a unique global solution θ satisfying,

θ ∈ L∞([0,∞); Bs
q,∞(R2)), u ∈ L∞([0,∞); B1+s1

q,∞ (R2)),

where s1 < s.
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In order to prove the global regularity result for the inviscid model,

we need the interpolation inequality.

Proposition

Let u : Rd → Rd be a vector field. Assume

(∇u)jk = RlRm (log(I + log(I −∆)))γ θ (38)

Then, for any 1 ≤ q ≤ ∞ and s > d/q,

‖∇u‖L∞ ≤ ‖θ‖L1∩L∞ + C ‖θ‖L∞ log(1 + ‖θ‖Bs
q,∞)

×
(

log
(

1 + log(1 + ‖θ‖Bs
q,∞)

))γ
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The proof consists of two major components. The first component

derives a global a priori bound while the second constructs a

unique local in time solution through the method of successive

approximation.

We start with the part on the global a priori bound. This part is

further divided into two steps. The first step shows that for any

d/q < σ < 1 and any T > 0 and t ≤ T

‖θ(t)‖Bσq,∞ ≤ C (T , ‖θ0‖X ), X = L1 ∩ L∞ ∩ Bσ
q,∞

and the second step establishes the global bound in Bσ1
q,∞ for some

σ1 > 1. A finite number of iterations then yields the global bound

in Bs
q,∞. Jiahong Wu Generalized surface quasi-geostrophic equations
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First of all, θ0 ∈ L1 ∩ L∞ implies that the corresponding solution θ

of (15) satisfies the a priori bound

‖θ(·, t)‖L1∩L∞ ≤ ‖θ0‖L1∩L∞ , t ≥ 0. (39)

In the process of establishing the a priori bound, we can avoid

using the divergence-free condition on u.

Let j ≥ −1 be an integer. Applying ∆j to (15) and following a

standard decomposition, we have

∂t∆jθ = J1 + J2 + J3 + J4 + J5 (40)

where
Jiahong Wu Generalized surface quasi-geostrophic equations
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J1 = −
∑
|j−k|≤2

[∆j ,Sk−1(u) · ∇]∆kθ,

J2 = −
∑
|j−k|≤2

(Sk−1(u)− Sj(u)) · ∇∆j∆kθ,

J3 = −Sj(u) · ∇∆jθ,

J4 = −
∑
|j−k|≤2

∆j(∆ku · ∇Sk−1(θ)),

J5 = −
∑

k≥j−1

∆j(∆ku · ∇∆̃kθ)

with ∆̃k = ∆k−1 + ∆k + ∆k+1.
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Multiplying (47) by ∆jθ|∆jθ|q−2, integrating in space and applying

Hölder’s inequality, we have

d

dt
‖∆jθ‖Lq ≤ ‖J1‖Lq + ‖J2‖Lq + ‖J3‖Lq + ‖J4‖Lq + ‖J5‖Lq . (41)

By a standard commutator estimate,

‖J1‖Lq ≤ C
∑
|j−k|≤2

‖∇Sk−1u‖L∞‖∆kθ‖Lq .

By Hölder’s and Bernstein’s inequalities,

‖J2‖Lq ≤ C ‖∇∆̃ju‖L∞ ‖∆jθ‖Lq .

By integration by parts,

‖J3‖Lq ≤ C ‖∇ · Sju‖L∞ ‖∆jθ‖Lq .
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For J4 and J5, we have

‖J4‖Lq ≤
∑
|j−k|≤2

‖∆ku‖L∞ ‖∇Sk−1θ‖Lq

≤ C
∑
|j−k|≤2

‖∇∆ku‖L∞
∑

m≤k−1

2m−k‖∆mθ‖Lq ,

‖J5‖Lq ≤ C
∑

k≥j−1

‖∆ku‖L∞‖∆̃k∇θ‖Lq

≤ C
∑

k≥j−1

‖∇∆ku‖L∞ ‖∆̃kθ‖Lq .

By Proposition 6.4, for any σ ∈ R,

‖J1‖Lq ≤ C
∑
|j−k|≤2

‖∇u‖L∞2−σ(k+1) 2σ(k+1)‖∆kθ‖Lq (42)

≤ C 2−σ(j+1) ‖θ‖Bσq,∞ ‖∇u‖L∞
∑
|j−k|≤2

2σ(j−k) (43)
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Introduction
Generalized SQG: inviscid case

Generalized SQG: dissipative case
Generalized SQG with singular velocities

Logarithmically supercritical SQG
Numerical results

≤ C 2−σ(j+1) ‖θ‖Bσq,∞ ‖∇u‖L∞ , (44)

where C is a constant depending on σ only. It is clear that ‖J2‖Lq

and ‖J3‖Lq obey the same bound. For any σ < 1, we have

‖J4‖Lq ≤ C ‖∇u‖L∞
∑
|j−k|≤2

∑
m<k−1

2m−k 2−σ(m+1) 2σ(m+1) ‖∆mθ‖Lq

≤ C ‖∇u‖L∞ ‖θ‖Bσq,∞
∑
|j−k|≤2

∑
m<k−1

2m−k 2−σ(m+1)

= C 2−σ(j+1) ‖θ‖Bσq,∞ ‖∇u‖L∞
∑
|j−k|≤2

2σ(j−k)
∑

m<k−1

2(m−k)(1−σ)

≤ C 2−σ(j+1) ‖θ‖Bσq,∞ ‖∇u‖L∞ .
Jiahong Wu Generalized surface quasi-geostrophic equations



Introduction
Generalized SQG: inviscid case

Generalized SQG: dissipative case
Generalized SQG with singular velocities

Logarithmically supercritical SQG
Numerical results

where C is a constant depending on σ only and the condition

σ < 1 is used to guarantee that (m − k)(1− σ) < 0. For any

σ > 0,

‖J5‖Lq ≤ C ‖∇u‖L∞ 2−σ(j+1)
∑

k≥j−1

2σ(j−k) 2σ(k+1) ‖∆̃kθ‖Lq

≤ C 2−σ(j+1) ‖θ‖Bσq,∞ ‖∇u‖L∞ .

Collecting these estimates, we obtain, for any 0 < σ < 1,

d

dt
‖∆jθ‖Lq ≤ C 2−σ(j+1) ‖θ‖Bσq,∞ ‖∇u‖L∞ .

Integrating in time yields

‖θ(t)‖Bσq,∞ ≤ ‖θ0‖Bσq,∞ + C

∫ t

0
‖θ(τ)‖Bσq,∞ ‖∇u(τ)‖L∞ dτ.
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Invoking the interpolation inequality in Proposition 6.4, we obtain,

for d/q < σ < 1,

‖θ(t)‖Bσq,∞ ≤ ‖θ0‖Bσq,∞ + C

∫ t

0
‖θ(τ)‖Bσq,∞

[
‖θ‖L1∩L∞ + (1 + ‖θ‖L∞)

× log(1 + ‖θ‖Bσq,∞)
(

log
(

1 + log(1 + ‖θ‖Bσq,∞)
))γ ]

dτ.

It then follows from Gronwall’s inequality that, for any T > 0,

‖θ(t)‖Bσq,∞ ≤ C (T , ‖θ0‖X ), t ≤ T .
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We now continue with the second step. Since d < q ≤ ∞, we can

choose σ satisfying

d

q
< σ < 1, σ + 1− d

q
> 1

and then set σ1 satisfying

1 < σ1 < σ + 1− d

q
.

This step establishes the global bound for ‖θ‖Bσ1
q,∞

. J1, J2 and J3

and J5 can be bounded the same way as before, namely

‖J1‖Lq , ‖J2‖Lq , ‖J3‖Lq , ‖J5‖Lq ≤ C 2−σ1(j+1) ‖θ‖Bσ1
q,∞
‖∇u‖L∞ .
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‖J4‖Lq is estimated differently and bounded by the global bound in

the first step. We start with the bound

‖J4‖Lq ≤ C
∑
|j−k|≤2

‖∇∆ku‖L∞
∑

m<k−1

2m−k‖∆mθ‖Lq .

By Bernstein’s inequality, we have

‖∇∆ku‖L∞ ≤ 2
dk
q ‖∇∆ku‖Lq

≤ 2
dk
q (log(2 + k))γ ‖∆kθ‖Lq .

Clearly,∑
m<k−1

2m−k ‖∆mθ‖Lq = 2−σk
∑

m<k−1

2(m−k)(1−σ)2σm ‖∆mθ‖Lq

≤ C 2−σk‖θ‖Bσq,∞ .
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‖J4‖Lq ≤ C
∑
|j−k|≤2

2
dk
q (log(2 + k))γ ‖∆kθ‖Lq 2−σk‖θ‖Bσq,∞

= C 2−σ1(j+1) ‖θ‖Bσq,∞
∑
|j−k|≤2

2σ1(j−k) (log(2 + k))γ 2(σ1+
d
q
−σ)k‖∆kθ‖Lq

= C 2−σ1(j+1) ‖θ‖Bσq,∞ ‖θ‖Bσ2
q,∞

∑
|j−k|≤2

2σ1(j−k) (log(2 + k))γ 2(σ1+
d
q
−σ−σ2)k

where σ2 < 1 is chosen very close to 1 and satisfies

σ1 +
2

q
− σ − σ2 < 0.

Then, by the global bound in the first step,

‖J4‖Lq ≤ C 2−σ1(j+1) ‖θ‖Bσq,∞ ‖θ‖Bσ2
q,∞
≤ C (T , ‖θ0‖X ) 2−σ1(j+1).
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Collecting the estimates in this step, we have

d

dt
‖∆jθ‖Lq ≤ C 2−σ1(j+1) ‖θ‖Bσ1

q,∞
‖∇u‖L∞+C (T , ‖θ0‖X ) 2−σ1(j+1).

By Proposition 6.4, for any d/q < σ < 1,

‖∇u‖L∞ ≤ ‖θ‖L1∩L∞ + (1 + ‖θ‖L∞)

× log(1 + ‖θ‖Bσq,∞)
(

log
(

1 + log(1 + ‖θ‖Bσq,∞)
))γ

≤ C (T , ‖θ0‖X ).

Therefore,

‖θ(t)‖Bσ1
q,∞
≤ ‖θ0‖Bσ1

q,∞
+ C (T , ‖θ0‖X )

(
1 +

∫ t

0
‖θ(τ)‖Bσ1

q,∞
dτ

)
.
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Proof for the dissipative model

The proof is divided into two main parts. The first part establishes

the global (in time) a priori bound on solutions of (??) while the

second part briefly describes the construction of a unique local (in

time) solution.

For notational convenience, we write

Y = L1(Rd) ∩ L∞(Rd) ∩ Bs,A
q,∞(Rd). The first part derives the

global bound, for any T > 0,

‖θ(·, t)‖
Bs,A

q,∞
≤ C (T , ‖θ0‖Y ) for t ≤ T (45)
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and we distinguish between two cases: q <∞ and q =∞. The

dissipative term is handled differently in these two cases.

We start with the case when q <∞. When the velocity field u is

divergence-free, θ0 ∈ L1 ∩ L∞ implies the corresponding solution θ

of (??) satisfies the a priori bound

‖θ(·, t)‖L1∩L∞ ≤ ‖θ0‖L1∩L∞ , t ≥ 0. (46)

When u is not divergence-free, (46) is assumed. The

divergence-free condition is not used in the rest of the proof.
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Let j ≥ −1 be an integer. Applying ∆j to (??) and following a

standard decomposition, we have

∂t∆jθ + κ(−∆)α∆jθ = J1 + J2 + J3 + J4 + J5, (47)
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where

J1 = −
∑
|j−k|≤2

[∆j ,Sk−1(u) · ∇]∆kθ, (48)

J2 = −
∑
|j−k|≤2

(Sk−1(u)− Sj(u)) · ∇∆j∆kθ, (49)

J3 = −Sj(u) · ∇∆jθ, (50)

J4 = −
∑
|j−k|≤2

∆j(∆ku · ∇Sk−1(θ)), (51)

J5 = −
∑

k≥j−1

∆j(∆̃ku · ∇∆kθ) (52)
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with ∆̃k = ∆k−1 + ∆k + ∆k+1. We multiply (47) by ∆jθ|∆jθ|q−2

and integrate in space. Integrating by parts in the term associated

with J3, we obtain

−
∫

Rd

(Sj(u) · ∇∆jθ) ∆jθ|∆jθ|q−2 dx =
1

q

∫
Rd

(∇ · Sju)|∆jθ|q dx

=

∫
Rd

J̃3 |∆jθ|q−1 dx ,

where J̃3 is given by

J̃3 =
1

q
(∇ · Sju)|∆jθ|.
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Applying Hölder’s inequality, we have

1

q

d

dt
‖∆jθ‖qLq + κ

∫
∆jθ|∆jθ|q−2(−∆)α∆jθ dx (53)

≤
(
‖J1‖Lq + ‖J2‖Lq + ‖J̃3‖Lq + ‖J4‖Lq + ‖J5‖Lq

)
‖∆jθ‖q−1

Lq .

For j ≥ 0, we have the lower bound (see [?] and [?])∫
∆jθ|∆jθ|q−2(−∆)α∆jθ ≥ C 22αj ‖∆jθ‖qLq . (54)
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For j = −1, this lower bound is invalid. Still we have∫
∆jθ|∆jθ|q−2(−∆)α∆jθ ≥ 0. (55)

Attention is paid to the case j ≥ 0 first. Inserting (54) in (53)

leads to

d

dt
‖∆jθ‖Lq +κ 22αj ‖∆jθ‖Lq ≤ ‖J1‖Lq +‖J2‖Lq +‖J̃3‖Lq +‖J4‖Lq +‖J5‖Lq .

By a standard commutator estimate,

‖J1‖Lq ≤ C
∑
|j−k|≤2

‖∇Sk−1u‖L∞‖∆kθ‖Lq .

By Hölder’s and Bernstein’s inequalities,

‖J2‖Lq ≤ C ‖∇∆̃ju‖L∞ ‖∆jθ‖Lq .
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Clearly,

‖J̃3‖Lq ≤ C ‖∇ · Sju‖L∞ ‖∆jθ‖Lq .

For J4 and J5, we have

‖J4‖Lq ≤
∑
|j−k|≤2

‖∆ku‖L∞ ‖∇Sk−1θ‖Lq ,

‖J5‖Lq ≤
∑

k≥j−1

‖∆̃ku‖L∞‖∆k∇θ‖Lq

≤ C
∑

k≥j−1

‖∇∆̃ku‖L∞ ‖∆kθ‖Lq .
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These terms can be further bounded as follows. By Theorem 6.1,

‖∇Sku‖L∞ ≤ ‖θ0‖L1∩L∞ + Ck P(2k+1)‖Sk+1θ‖L∞

≤ ‖θ0‖L1∩L∞ + Ck P(2k+1)‖θ0‖L∞ .

Thus,

‖J1‖Lq ≤ C ‖θ0‖L1∩L∞

∑
|j−k|≤2

(1 + Ck P(2k+1))2−sAk 2sAk‖∆kθ‖Lq

≤ C 2−sAj ‖θ0‖L1∩L∞‖θ‖Bs,A
q,∞

∑
|j−k|≤2

(1 + Ck P(2k+1))2s(Aj−Ak ).
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Since Aj is a nondecreasing function of j ,

2s(Aj−Ak ) ≤ 2s(Aj−Aj−2) for |k − j | ≤ 2, (56)

where we have adopted the convention that Al ≡ 0 for l < −1.

Consequently,

‖J1‖Lq ≤ C 2−sAj−2 ‖θ0‖L1∩L∞‖θ‖Bs,A
q,∞

(
1 + (j + 2)P(2j+2)

)
.
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Clearly, ‖J2‖Lq and ‖J3‖Lq admits the same bound as ‖J1‖Lq . By

Bernstein’s inequality and Theorem 6.1,

‖J4‖Lq ≤ C
∑
|j−k|≤2

‖∇∆ku‖Lq ‖Sk−1θ‖L∞

≤ C ‖θ‖L∞
∑
|j−k|≤2

P(2k+1)‖∆kθ‖Lq .

By (56), we have

‖J4‖Lq ≤ C 2−sAj−2 ‖θ0‖L∞ ‖θ‖Bs,A
q,∞

P(2j+2).
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By Theorem 6.1,

‖J5‖Lq ≤ C
∑

k≥j−1

P(2k+1)‖∆̃kθ‖L∞‖∆kθ‖Lq

≤ C ‖θ0‖L∞
∑

k≥j−1

P(2k+1)‖∆kθ‖Lq

≤ C ‖θ0‖L∞2−sAj−2 P(2j+1)‖θ‖
Bs,A

q,∞

∑
k≥j−1

2sAj−2

P(2j+1)

P(2k+1)

2sAk

By (24),

‖J5‖Lq ≤ C ‖θ0‖L∞2−sAj−2 P(2j+1)‖θ‖
Bs,A

q,∞
.
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Collecting all the estimates, we have, for j ≥ 0,

d

dt
‖∆jθ‖Lq + κ 22αj ‖∆jθ‖Lq ≤ C 2−sAj−2 ‖θ0‖L1∩L∞

×‖θ‖
Bs,A

q,∞

(
1 + (j + 2)P(2j+2)

)
.

That is,

d

dt

(
eκ2

2αj t‖∆jθ‖Lq

)
≤ C eκ2

2αj t2−sAj−2 ‖θ0‖L1∩L∞‖θ‖Bs,A
q,∞

(
1 + (j + 2)P(2j+2)

)
.

Integrating in time and multiplying by 2sAj · e−κ22αj t , we obtain, for

j ≥ 0,

2sAj ‖∆jθ‖Lq ≤ 2sAj e−κ2
2αj t‖∆jθ0‖Lq + Kj , (57)
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where

Kj = C ‖θ0‖L1∩L∞
(
1 + (j + 2)P(2j+2)

)
2s(Aj−Aj−2)

∫ t

0
e−κ2

2αj (t−τ)‖θ(τ)‖
Bs,A

q,∞
dτ.

To further the estimates, we fix t0 ≤ T and let t ≤ t0. It is easy to

see that Kj admits the upper bound

Kj ≤ C ‖θ0‖L1∩L∞
(
1 + (j + 2)P(2j+2)

)
2s(Aj−Aj−2)

× 1

κ22αj

(
1− e−κ2

2αj t
)

sup
0≤τ≤t0

‖θ(τ)‖
Bs,A

q,∞
.
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According to (25), there exists an integer j0 such that, for j ≥ j0,

Kj ≤
1

2
sup

0≤τ≤t0

‖θ(τ)‖
Bs,A

q,∞
. (58)

For 0 ≤ j ≤ j0,

Kj ≤ C ‖θ0‖L1∩L∞
(
1 + (j0 + 2)P(2j0+2)

)
max

0≤j≤j0
2s(Aj−Aj−2)

∫ t

0
‖θ(τ)‖

Bs,A
q,∞

dτ.

(59)

Jiahong Wu Generalized surface quasi-geostrophic equations



Introduction
Generalized SQG: inviscid case

Generalized SQG: dissipative case
Generalized SQG with singular velocities

Logarithmically supercritical SQG
Numerical results

We now turn to the case when j = −1. By combining (47) and

(55) and estimating ‖J1‖Lq through ‖J5‖Lq in an similar fashion as

for the case j ≥ 0, we obtain

‖∆−1θ(t)‖Lq ≤ ‖∆−1θ(0)‖Lq + C ‖θ0‖L1∩L∞

∫ t

0
‖θ(τ)‖

Bs,A
q,∞

dτ.

(60)

Putting (57) and (60) together, we find, for any j ≥ −1,

2sAj ‖∆jθ‖Lq ≤ ‖θ0‖Bs,A
q,∞

+ Kj , (61)
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where Kj obeys the bound (58) for j ≥ j0 and the bound in (59)

for −1 ≤ j < j0. Applying supj≥−1 to (61) and using the simple

fact that

sup
j≥−1

Kj ≤ sup
j≥j0

Kj + sup
−1≤j<j0

Kj ,

we obtain

‖θ(t)‖
Bs,A

q,∞
≤ ‖θ0‖Bs,A

q,∞
+

1

2
sup

0≤τ≤t0

‖θ(τ)‖
Bs,A

q,∞
+ C (θ0, j0)

∫ t

0
‖θ(τ)‖

Bs,A
q,∞

dτ,

where

C (θ0, j0) = C ‖θ0‖L1∩L∞
(
1 + (j0 + 2)P(2j0+2)

)
max

0≤j≤j0
2s(Aj−Aj−2).
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Now taking supermum over t ∈ [0, t0], we obtain

sup
0≤τ≤t0

‖θ(τ)‖
Bs,A

q,∞
≤ 2 ‖θ0‖Bs,A

q,∞
+ C (θ0, j0)

∫ t0

0
‖θ(τ)‖

Bs,A
q,∞

dτ,

Gronwall’s inequality then implies (45) for any t ≤ t0 ≤ T . This

finishes the case when q <∞.

We now turn to the case when q =∞. For j ≥ 0, applying ∆j

yields

∂t∆jθ + Sju · ∇(∆jθ) + κ(−∆)α∆jθ = J1 + J2 + J4 + J5

where J1, J2, J4 and J5 are as defined in (48), (49), (51) and (52),

respectively. According to Lemma ?? below, we have

∂t‖∆jθ‖L∞+C 22αj‖∆jθ‖L∞ ≤ ‖J1‖L∞+‖J2‖L∞+‖J4‖L∞+‖J5‖L∞ .

(62)

The terms on the right can be estimated similarly as in the case

when q <∞. For j = −1, (62) is replaced by

∂t‖∆−1θ‖L∞ ≤ ‖J1‖L∞ + ‖J2‖L∞ + ‖J4‖L∞ + ‖J5‖L∞ .

The rest of the proof for this case is then very similar to the case

q <∞ and we thus omit further details.
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Happy Birthday, Peter!
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